El Sistema Binario.
Es el Sistema de numeración que utiliza internamente el hardware de las computadoras actuales. Se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por lo tanto, es base es 2 (Numero de dígitos del sistema).
Cada dígito de un número representado en este sistema se denomina Bit (Contracción de Binary Digit).
Binaria
Es semejante a la suma en el sistema decimal, con la de que se manejan sólo 2 dígitos (0 y 1), y que cuando el resultado excede de los símbolos utilizados se agrega el exceso (acarreo) a la suma siguiente hacia la izquierda. Las tablas de sumar son:

Realizamos en paralelo a la aritmética binaria su equivalente en decimal, que nos servirá como comprobación.
Ejemplos:


Resta Binaria.
La resta binaria es similar a la decimal con la diferencia de tener sólo 2 dígitos y que al realizar las restas parciales entre 2 dígitos, 1 del minuendo y otro del sustraendo, si el segundo excede al primero, se sustrae una unidad del dígito de más a la izquierda en el minuendo (si existe y vale 1), convirtiéndose este último en 0 y equivaliendo a la unidad extraída a 1 * 2 en el minuendo de resta parcial que estamos realizando. Si es 0 el dígito siguiente a la izquierda, se busca en los sucesivos teniendo en cuenta que su valor se multiplica por 2ª cada desplazamiento a la derecha. Las tablas de restar son las siguientes:
Tabla del 0 Tabla del 1
0 – 0 = 0 1 – 0= 1
0 – 1 = No cabe – 0 – 1= 0
Ejemplos
- Resta los números binarios11101 (29) y 111 (7).
- Restar 111111 (63) y 101010 (42)
1 1 1 1 1 1. . . . . . . . . 63
- 1 0 1 0 1 0. . . . . . . . .- 42
0 1 0 1 0 1. . . . . . . . . 21
- Restar 11.01 (3.25) y 10.1 (2.5).
0 2
1 1. 0 1. . . . . . . . . . 3.25
-1 0. 1 0. . . . . . . . . .-2.50
0 0. 1 1. . . . . . . . . . .189
Multiplicación Binaria.
Se realiza de forma similar a la multiplicación decimal, salvo que la suma final de los productos parciales se hacen en binario. Las tablas de son.
Tabla del 0 Tabla del 1
0 * 0 = 0 1 * 0 = 0
0 * 1 = 0 1 * 1 = 1
Ejemplos:
- Multiplicar 1 1 0 1 0 1 (53) por 1 1 0 1 (13).
1 1 0 1 0 1. . . . . . . . . 53
* 1 1 0 1. . . . . . . . *13
1 1 0 1 0 1
1 1 0 1 0 1
1 1 0 1 0 1 .
1 0 1 0 1 1 0 0 0 1. . . . . . . . .689
Binaria.
Se realiza de forma idéntica a la división decimal, salvo que las multiplicaciones y restas internas al proceso de la división se hacen en binario.
Ejemplos:
- Dividir 1 0 0 0 1 0 (34) entre 1 1 0 (6).

Sistema Hexadecimal
Un gran problema con el sistema binario es la verbosidad. Para representar el valor 20210 se requieren ocho dígitos binarios, la versión decimal sólo requiere de tres dígitos y por lo tanto los números se representan en forma mucho más compacta con respecto al sistema numérico binario. Desafortunadamente las computadoras trabajan en sistema binario y aunque es posible hacer la conversión entre decimal y binario, ya vimos que no es precisamente una tarea cómoda. El sistema de numeración hexadecimal, o sea de base 16, resuelve este problema (es común abreviar hexadecimal como hex aunque hex significa base seis y no base dieciseis). El sistema hexadecimal es compacto y nos proporciona un mecanismo sencillo de conversión hacia el formato binario, debido a ésto, la mayoría del equipo de cómputo actual utiliza el sistema numérico hexadecimal. Como la base del sistema hexadecimal es 16, cada dígito a la izquierda del punto hexadecimal representa tantas veces un valor sucesivo potencia de 16, por ejemplo, el número 123416 es igual a:
1*163 + 2*162 + 3*161 + 4*160
lo que da como resultado:4096 + 512 + 48 + 4 = 466010
Cada dígito hexadecimal puede representar uno de dieciseis valores entre 0 y 1510. Como sólo tenemos diez dígitos decimales, necesitamos inventarseis dígitos adicionales para representar los valores entre 1010 y 1510. En lugar de crear nuevos simbolos para estos dígitos, utilizamos las letras A a la F. La conversión entre hexadecimal y binario es sencilla, considere la siguiente tabla:Binario Hexadecimal 0000 0 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9 1010 A 1011 B 1100 C 1101 D 1110 E 1111 FEsta tabla contiene toda la información necesaria para convertir de binario a hexadecimal y visceversa. Para convertir un número hexadecimal en binario, simplemente sustituya los correspondientes cuatro bits para cada dígito hexadecimal, por ejemplo, para convertir 0ABCDh en un valor binario:
0 A B C D (Hexadecimal) 0000 1010 1011 1100 1101 (Binario)Por comodidad, todos los valores numéricos los empezaremos con un dígito decimal; los valores hexadecimales terminan con la letra h y los valores binarios terminan con la letra b. La conversión de formato binario a hexadecimal es casi igual de fácil, en primer lugar necesitamos asegurar que la cantidad de dígitos en el valor binario es múltiplo de 4, en caso contrario agregaremos ceros a la izquierda del valor, por ejemplo el número binario1011001010, la primera etapa es agregarle dos ceros a la izquierda para que contenga doce ceros: 001011001010. La siguiente etapa es separar el valor binario en grupos de cuatro bits, así: 0010 1100 1010. Finalmente buscamos en la tabla de arriba los correspondientes valores hexadecimales dando como resultado, 2CA, y siguiendo la convención establecida: 02CAh.
sistema octal
Tabla de la suma en base 16:
Tabla de la multiplicacion en base 16:
Tabla de los primeros 16 números
Es un sistema de base 8, es decir, con sólo ocho símbolos distintos 0,1,2,3,4,5,6,7 .
Por ejemplo:
40712 8 es un número en base 8 y representa el número:
\large 4 \times 8^4 + 0 \times 8^3 + 7 \times 8^2 + 1 \times 8^1 + 2 \times 8^0 = 4 \times 4094 + 0 \times 512 + 7 \times 64 + 1 \times 8 + 2 \times 1 = 16384 + 0 + 448 + 8 + 2 = 16842
Los números octales pueden construirse a partir de números binarios agrupando cada tres dígitos consecutivos de estos últimos (de derecha a izquierda) y obteniendo su valor decimal.
Por ejemplo, el número binario para 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 001 010. De modo que el número decimal 74 en octal es 112.
En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos.
Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares. Esto explicaría porqué en latín nueve (novem) se parece tanto a nuevo (novus). Podría tener el significado de número nuevo. [editar]
Fracciones
La numeración octal es tan buena como la binaria y la hexadecimal para operar con fracciones, puesto que el único factor primo para sus bases es 2.
Fraccion | Octal | Resultado en octal |
1/2 | 1/2 | 0,4 |
1/3 | 1/3 | 0,25252525 periódico |
1/4 | 1/4 | 0,2 |
1/5 | 1/5 | 0,14631463 periódico |
1/6 | 1/6 | 0,125252525 periódico |
1/7 | 1/7 | 0,111111 periódico |
1/8 | 1/10 | 0,1 |
1/9 | 1/11 | 0,07070707 periódico |
1/10 | 1/12 | 0,063146314 periódico |
Tabla de la suma en base 8:
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
3 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12 |
4 | 4 | 5 | 6 | 7 | 10 | 11 | 12 | 13 |
5 | 5 | 6 | 7 | 10 | 11 | 12 | 13 | 14 |
6 | 6 | 7 | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Tabla de la multiplicación en base 8:
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 0 | 2 | 4 | 6 | 10 | 12 | 14 | 16 |
3 | 0 | 3 | 6 | 11 | 14 | 17 | 22 | 25 |
4 | 0 | 4 | 10 | 14 | 20 | 24 | 30 | 34 |
5 | 0 | 5 | 12 | 17 | 24 | 31 | 36 | 43 |
6 | 0 | 6 | 14 | 22 | 30 | 36 | 44 | 52 |
7 | 0 | 7 | 16 | 25 | 34 | 43 | 52 | 61 |
El sistema de numeración más utilizado actualmente en computación es el hexadecimal o base 16, el cual consta de 16 dígitos símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F . El sistema hexadecimal un sistema de numeración vinculado a la informática, ya que los ordenadores interpretan los lenguajes de programación en bytes, que están compuestos de ocho dígitos. A medida de que los ordenadores y los programas aumentan su capacidad de procesamiento, funcionan con múltiplos de ocho, como 16 o 32. Por este motivo, el sistema hexadecimal, de 16 dígitos, es un estándar en la informática.
Como nuestro sistema de numeración sólo dispone de diez dígitos, debemos incluir seis letras para completar el sistema.
Estas letras y su valor en decimal son: A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15.
El sistema hexadecimal es posicional y por ello el valor numérico asociado a cada signo depende de su posición en el número, y es proporcional a las diferentes potencias de la base del sistema que en este caso es 16.
Veamos un ejemplo numérico: 3E0,A (16) = ( 3×16
) + ( E×16¹ ) + ( 0×160 ) + ( A×16–1 ) = ( 3×256 ) + ( 14×16 ) + ( 0×1 ) + ( 10×0,0625 ) = 992,625
La utilización del sistema hexadecimal en los ordenadores, se debe a que un dígito hexadecimal representa a cuatro dígitos binarios (4 bits = 1 nibble), por tanto dos dígitos hexadecimales representaran a ocho dígitos binarios (8 bits = 1 byte) que como es sabido es la unidad básica de almacenamiento de información. Por ejemplo:
2A703 16 es un número en base 16 y representa el número:
{$ 2 * 16^4 + 10 * 16^3 + 7 * 8^2 + 0 * 16^1 + 3 * 16^0 = 2 * 65536 + 10 * 1096 + 7 * 256 + 0 * 16 + 3 * 1 = 16384 + 10960 + 1792 + 0 + 3 = 29139 $}
Tabla de la suma en base 16:
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 |
3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 |
5 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 |
6 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
9 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
A | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
B | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A |
C | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B |
D | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C |
E | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D |
F | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D | 1E |
Tabla de la multiplicacion en base 16:
* | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 |
2 | 4 | 6 | 8 | A | C | E | 10 | 12 | 14 | 16 | 18 | 1A | 1C | 1E | 20 |
3 | 6 | 9 | C | F | 12 | 15 | 18 | 1B | 1E | 21 | 24 | 27 | 2A | 2D | 30 |
4 | 8 | C | 10 | 14 | 18 | 1C | 20 | 24 | 28 | 2C | 30 | 34 | 38 | 3C | 40 |
5 | A | F | 14 | 19 | 1E | 23 | 28 | 2D | 32 | 37 | 3C | 41 | 46 | 4B | 50 |
6 | C | 12 | 18 | 1E | 24 | 2A | 30 | 36 | 3C | 42 | 48 | 4E | 54 | 5A | 60 |
7 | E | 15 | 1C | 23 | 2A | 31 | 38 | 3F | 46 | 4D | 54 | 5B | 62 | 69 | 70 |
8 | 10 | 18 | 20 | 28 | 30 | 38 | 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 | 80 |
9 | 12 | 1B | 24 | 2D | 36 | 3F | 48 | 51 | 5A | 63 | 6C | 75 | 7E | 87 | 90 |
A | 14 | 1E | 28 | 32 | 3C | 46 | 50 | 5A | 64 | 6E | 78 | 82 | 8C | 96 | A0 |
B | 16 | 21 | 2C | 37 | 42 | 4D | 58 | 63 | 6E | 79 | 84 | 8F | 9A | A5 | B0 |
C | 18 | 24 | 30 | 3C | 48 | 54 | 60 | 6C | 78 | 84 | 90 | 9C | A8 | B4 | C0 |
D | 1A | 27 | 34 | 41 | 4E | 5B | 68 | 75 | 82 | 8F | 9C | A9 | B6 | C3 | D0 |
E | 1C | 2A | 38 | 46 | 54 | 62 | 70 | 7E | 8C | 9A | A8 | B6 | C4 | D2 | E0 |
F | 1E | 2D | 3C | 4B | 5A | 69 | 78 | 87 | 96 | A5 | B4 | C3 | D2 | E1 | F0 |
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | A0 | B0 | C0 | D0 | E0 | F0 | 100 |
Tabla de los primeros 16 números
Decimal | Binario | Octal | Hexadecimal |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
No hay comentarios:
Publicar un comentario